60. Aerodynamic Design with Physics-Based Surrogates

Emiliano Iuliano, Domenico Quagliarella

Details, references and guidelines are given about the adoption of surrogate models and reducedorder models within the aerodynamic shape optimization context. The aerodynamic design problem and its approximated version are introduced and discussed and then, an overview of various surrogate models and surrogate-based optimization methods is given. Subsequently, the concept of model order reduction is recalled, and the performance analysis of reduced-order models based on proper orthogonal decomposition (POD) is discussed. Within this context, some techniques to adaptively and globally improve the accuracy of POD-based surrogates are illustrated. Finally, an aerodynamic shape design problem of a transonic airfoil is used to practically analyze and compare the performances of various surrogate-based optimization methods.

60.1	The Ae 60.1.1	rodynamic Design Problem Problem Approximation	1186 1186
60.2	Literati of Surr	ure Review ogate-Based Optimization	1187
60.3	POD-B 60.3.1	Ased Surrogates Model Order Reduction POD Theory and Solution	1190 1190 1191

Modern air vehicle design has been increasingly driven by environmental as well as operational constraints. Environmental concerns, including emissions and noise, are gaining increasing importance in the design and operations of commercial aircraft. Taking into account the current prognoses for the growth in air traffic, the above-mentioned challenges become even more significant [60.1–4]. In this context, the development and assessment of new theoretical methodologies represents a cornerstone for reducing the experimental load, exploring trade-offs, and proposing alternatives along the design path. The fidelity of such methods is essential

00.4 Application Example					
	of POD	-Based Surrogates	1191		
	60.4.1	Parameterization			
		and Design Space Definition	1192		
	60.4.2	Design of Experiments	1192		
	60.4.3	Zonal POD	1193		
	60.4.4	Model Training, Validation,			
		and Error Analysis	1194		
60.5	Strateg	ies for Improving POD Model			
	Quality	Adaptive Sampling	1199		
	60.5.1	Rationale	1199		
	60.5.2	Improvement			
		of the Modal Basis	1200		
	60.5.3	Improvement			
		of the Modal Coefficients	1200		
60.6	Aerody	namic Shape Optimization			
by Surrogate Modeling					
	and Ev	olutionary Computing	1201		
	60.6.1	Problem Definition	1202		
	60.6.2	Optimization Strategies			
		and Setup	1202		
	60.6.3	Non-Adaptive Optimization			
		Results	1204		
	60.6.4	Adaptive Optimization Results	1204		
	60.6.5	Optima Analysis	1206		
60.7	Conclu	sions	1207		
References					

to reproduce *real-life* phenomena with a significant degree of accuracy and to take them into account from the very beginning of the design process. Due to the intrinsic complexity of aircraft design, the design space is often huge and difficult to explore fully, so that fast semi-empirical tools and rules [60.5–7], derived from classical configuration data, have been traditionally applied. However, they exhibit a severe lack of accuracy when designing novel and unconventional concepts. Therefore, highly accurate analysis methods have been continuously introduced both in geometric representation and physical modeling, but the main drawback 1185