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Abstract.

Purpose - The paper describes a research effort towards the comprehension of the

unsteady phenomena due to the deployment of high-lift devices at approach/landing

conditions.

Design/methodology/approach - The work starts from a preexisting platform

based on an Immersed Boundary (IB) method whose capabilities are extended to

study compressible and viscous flows around moving/deforming objects. A hybrid

Lagrangian-Eulerian approach is designed to consider the motion of multiple bodies

through a fixed Cartesian mesh. That is, the cells’ volumes do not move in space but

rather they observe the solid walls crossing themselves. A dynamic discrete forcing

makes use of a moving least-square procedure (MLSQ) which has been validated

by simulating well-known benchmarks available for rigid body motions. Partitioned

FSI strategies are explored to consider aeroelastic phenomena. A shared platform,

between the aerodynamic and structural solvers, fulfils the loads’ transfer and drives

the sequence of operating steps.

Findings - The first part of the results is devoted to a basic 2D study aiming

at evaluating the accuracy of the method when simple rigid motions are prescribed.

Afterwards, the paper discusses the solution obtained when applying the dynamic IB

method to the rigid deployment of a Krueger-flap. The final section discusses the

aeroelastic behaviour of a three-element airfoil during its deployment phase. A loose

FSI coupling is applied for estimating the possible loads’ downgrade.

Practical implications - The proposed method improves automation in FSI

numerical analysis and relaxes the human expertise/effort for meshing the

computational domain around complex three-dimensional geometries. The logical

consequence is an overall speed-up of the simulation process.

Originality/value - The value of the paper consists in demonstrating the

applicability of dynamic IB techniques for studying high-lift devices. In particular,

the proposed Cartesian method does not want to compete with body-conforming ones

whose accuracy remains generally superior. Rather, the merit of this research is to

propose a fast and automatic simulation system as a viable alternative to classic multi-

block structured, chimera or unstructured tools.
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1. Introduction

Immersed boundary (IB) methods represents a sounding and credibly way forward

for studying unsteady flows around complex geometries with moving/deforming surfaces.

Although, body-conforming methods have successfully applied to moving-boundary

problems[1, 2, 3, 4] their applicability to three-dimensional configurations with complex

kinematics is not completely satisfactory and often computationally expensive.

Indeed, almost all block-structured and unstructured methods use re-meshing or

mesh-deformation techniques to follow Lagrangian surfaces. Apart from the huge

programming effort, these methods implies a high turn-around time and often the

downgrade of the mesh quality due to mesh stretching. When large displacements occur,

for example, a moving-mesh technique generates highly skewed and/or degenerate cells

(zero or negative volumes).

Sliding-mesh or re-meshing procedures can alleviate these issues but are time-

consuming[5]. In particular, some block-structured techniques are hardly applicable

in case of geometries with very small gaps such as the ones occurring at the wing-cuts

along the span between the main the flap and the aileron components.

Overset multi-block techniques avoid re-meshing or mesh-deformations even if they

are formally non-conservative and not prone towards mesh automation.[6, 7, 4]

On the contrary, Cartesian methods exploit the advantages of fast and automatic

pre-processing with the flexibility of transient mesh adaptations[8, 9, 10]. Rigid body

motions[11, 12] (RBM) or fluid-structure interactions[11, 13, 14] (FSI) are often

obtained by moving objects through a fixed Cartesian mesh. This implies that cells

emerge from the solid towards the fluid region and vice-versa. As darkening cells

are simply switched off, the ‘fresh-cleared’ ones should participate to the new flow

state. However, they do not have a valid time-history from previous time-steps. Then,

reconstructions in both space and time are usually carried out but at the cost of

generating local as well as global conservation errors. The latter, if not catastrophic,

cause spurious forces’ oscillations (SFOs).

Among Cartesian methods, the cut-cell ones deserve to be mentioned due to their

conservative properties at wall. Anyhow, the modifications to the spatial scheme at

cut-cells facing the geometry boundaries cause local numerical noise as well. The use of

redistribution weights made by Schneiders et al. [14] is able of relaxing the issue.

Analogously, many IB techniques add proper body forces in the governing equations

and make use of analytic delta functions that can be manipulated to smooth transient

oscillations[15, 10]. Alternatively, sharp-interface IB methods apply discrete body forces
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which satisfy wall BCs but violate local conservation[8, 16].

A ‘field-extension’ technique is proposed by Yang and Balaras[17] that extrapolate

quantities to solid nodes at each time-step. This procedure reconstructs the flow field

in those cells that will emerge towards the fluid region at the next time-step.

A moving least-square procedure (MLSQ) for incompressible methods is proposed

by Vanella et al.[11]. They use a smooth discrete forcing that guarantees momentum

conservation between Lagrangian and Eulerian meshes.

The paper discusses the development and validation of a fast and automatic IB

method for unsteady flows around moving/deforming objects. A hybrid Lagrangian-

Eulerian approach allows the motion of arbitrary objects through a fixed Cartesian grid.

A dynamic adaptive mesh refinement (AMR) procedure is developed in proximity of

moving walls. A smooth discrete forcing is obtained by a moving least-square procedure

(MLSQ)[11, 13] with the aim of guaranteeing a consistent and accurate loads’ transfer

between the Lagrangian and Eulerian markers.

The proposed IB tool has been validated on some benchmarks dealing with rigid

body motions (RBM). Here, for brevity, we discuss only the results for a transonic

inviscid flow around an oscillating airfoil and compare them with other data from the

literature.

A first application examines the solution obtained when applying the dynamic

IB-method to the rigid deployment of a Krueger-flap. This represents a challenging

application due to the high rotation-speed. The latter may cause robustness issues for

many body-conforming as well as Cartesian methods. Indeed, large displacements occur

and local time-step restrictions are needed to avoid numerical instabilities. In particular,

the relative motion between the Krueger-plate and bull-nose causes small gaps during the

deployment/retraction phases that may impair the convergence process (flow through a

narrow area). Even the progressive approaching between the two surfaces towards the

complete merging (fully-deployed configuration) represents an issue for body-conforming

approaches and an open-field of research.[4]

The present research is also exploring different fluid-structure interaction (FSI)

strategies for driving the solution sequence appropriately. These are based on a

partitioned coupling between the present IB method and a FEM-solver. The latter

communicate each other by means of a proper interface to allow conservative loads’

mapping between computational fluid dynamics (CFD) and computational structural

mechanics (CSM) meshes.

In particular, a loose two-way coupling is set-up which uses time-accurate

aerodynamic loads to compute linear and static deformations in a very fast way. Of

course, the deformation velocities are zero. Then, the modified shape is used to

compute the flow-state at the next time-step. An implicit loop drives the codes to

loads’ convergence. This coupling is applied to study the aeroelastic behaviour of a

slat-main-flap device during its deployment phase.
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2. Numerical background

The present research starts from an unstructured IB framework specifically

developed to speed up and automate as much as possible the simulation of unsteady

viscous flows around stationary configurations[18, 19]. The governing equations are the

three-dimensional unsteady compressible Navier-Stokes (NaS) whose basic conservative

variables are the density, the mass flux vector and the total energy per unit volume

(ρ, ρu, ρv, ρw, ρE). The unsteady RANS model is currently applied to solve turbulent

flows. In addition, a hybrid RANS-LES model is available whose formulation is proposed

by Kok[20] with the name of eXtra Large Eddy (XLES). It relies on the composition of

a k-equation SGS model and the k − ω TNT one[21].

The Cartesian method applies a finite volume (FV) approximation to solve the

differential equations on locally refined meshes. A 2nd order space-centered scheme

(CDS) is applied based on skew-symmetric convective fluxes[20]. The viscous fluxes of

NaS equations are spatially discretized by averaging the gradients at the neighbouring

cell centers and applying a proper correction in the direction connecting the cell-

centers[22, 23].

An implicit 2nd order dual-time-stepping (DTS) technique integrates equation in

the time domain[24, 25]. A low-storage Runge-Kutta relaxation advances the discrete

equations in the dual-time[25] and a 1st order prediction formula speeds-up the pseudo-

time integration.

A collection of sharp and discrete body forces mimics the effects of steady walls

on the surrounding flow. Instead of adding these source terms into the momentum

equations, the present method modifies the basic FV scheme near the wall by satisfying

proper BC s de-facto generating the proper forcing in an indirect way. For example,

consider the simplified sketch shown in figure 1 where the Cartesian cells (black-colored)

are cut by the wall-surface (red-colored). Proper fluxes are forced at the near-wall IB-

faces (blue-colored circles) to satisfy the desired Dirichlet/Neumann conditions at the

wall.

In this case, we speak of a face-based approach whose main advantage is applying

the same FV scheme on both the far- and near-wall cells. Especially the latter require a

proper treatment. In particular, we need to estimate the flow state vector Q at their IB-

face centers. To do that, an inner-layer is built up by setting an ensemble of fictitious

forcing points Fi (green-colored circles) at a fixed perpendicular distance δF from the

wall. Here, the distance δF is set to O(∆xi) where ∆xi is the smallest cell spacing.

Each flow-state vector Qi is there reconstructed from the neighbouring cells by using a

weighted least-square procedure (WLSQ). The IB-face center values can be adapted to

satisfy the desired wall BCs once known the Qi at the forcing point[26]. The way the

generic convective or diffusive fluxes are computed depends on the flow regime.

In case of Euler flows a linear interpolation is coupled with classic slip-wall BCs

to obtain feasible values at face-centers[27, 28]. No-slip wall and other Low-Reynolds

BCs are applied for laminar flows. Linear interpolators, however, have sense for 2nd
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Figure 1. Sharp discrete-forcing.

order solvers provided that a sufficient mesh refinement is guaranteed in proximity of

the wall[29, 30].

At high Reynolds numbers, the solver uses a wall-model to mimic the non-linearities

of turbulent boundary-layers. A virtual sub-grid zone is solved by means of simplified

thin boundary layer PDEs. Upper BCs get information from the surrounding external

flow and wall BCs drive the non-linear solution down to the wall. More details can be

found in Refs. [26, 31].

3. Dynamic immersed boundaries

The modelling of a Lagrangian body that moves through a Eulerian domain poses

different issues: the tracking of moving surfaces, a dynamic meshing, the stability and

accuracy of the schemes. The former aspects are addressed by exploiting the pre-existing

simulation framework based on ray-tracing techniques as well as fast and automated

meshing.

The major difficulty lies in the rising and fading of fluid cells around moving

walls. The literature on the IB topic have experienced spurious oscillations (SFOs)

in transient loads which are due to lack of local mass conservation and changes of the

discrete operators near the wall. In particular, Leo et al.[32] and Seo et al.[33] ascribe

spatial and temporal discontinuities to ‘fresh-cleared’ and ‘dead’ cells. Their numerical

experiments show that pressure oscillations scale as (∆xj)
2/(∆t) and (∆xj)

3/(∆t) in

two- and three-dimensions respectively[33].

A way of mitigating SFOs is to adopt a discrete forcing based on a moving least-

square (MLSQ) procedure. In particular, the MLSQ proposed by Vanella et al. [11]

and De Tullio et al.[13] builds up a smooth discrete forcing on the Lagrangian surface

and satisfies local wall BCs. Then the procedure converts the Lagrangian forcing back
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to the Eulerian mesh provided that the force acting on the fluid is not changed by the

transfer. However, their work is focused on incompressible methods.

Here a similar procedure is adopted but applied to compressible fluids. In particular,

the IB surfaces are allowed to move less than one IB-cell size at each time-step thus

imposing CFLbody = Ubody∆t/∆x < 1. The violation of this constraint would impair

the explicit character of the method. Extensions to implicit body motions for Cartesian

methods are discussed in Murman et al.[34].

Figure 2. Emerging cells and simplified view of MLSQ procedure.

The MLSQ approach is organized so as to exploit the framework previously

developed for static boundaries. The draft shown in figure 2 represents a boundary

moving between the two instants tn and tn+1. The emerging ‘fresh’ cell (red colored)

represents the target Eulerian marker whose flow-state Qn
k has to be reconstructed

somehow by using fluid neighbours. The latter are chosen among the ones hosted by a

‘support domain’ spanning three cell-size in each Cartesian direction (the black-dashed

volume). Note that, the support domain contains one or more forcing-points (green

open-circles) conjugated with wall Lagrangian markers (red open circles) according to

the geometric arrangement described for steady boundaries. The role of forcing points

is to modify the Ql vector at Lagrangian markers so as to satisfy wall BCs.

The Eulerian markers in the support domain give a discrete representation of each

flow quantity ϕ(x, y, z). They are used to search for an approximating linear function

in the LSQ sense and having the form

f(x, y, z) = b0 + b1x+ b2y + b3z =
3∑

i=0

ψibi = ΨTb (1)

where ΨT = [1, x, y, z] is a basis vector and b is the vector whose components are the

coefficients of the linear function. The values of the four unknowns bi are obtained by
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minimizing the following functional

G(f) = G(b0, b1, b2, b3) =
Ne∑
k=1

wk [f(xk)− ϕ(xk)]2 (2)

where Ne is the total number of Eulerian markers belonging to the support domain and

wk is a weighting function depending on the distance between the target point and the

k-th cell-center xk. Here we use exponential weighting function[13]

wk =

{
e(rk/ε)

2

rk ≤ 1

0 rk > 1

where ε = 0.3 and rk is defined as

rk =
|x− xk|

ri

with ri the size of the support domain in the i − th direction. Setting the derivatives

∂G/∂bi equal to zero, the following system of equations is obtained

3∑
j=0

Aijbj − ci = 0 i = 0, ..., 3 (3)

where the matrix Aij is defined as

Aij =
Ne∑
n=1

wn ψi(xk) ψj(xk) (4)

and the known terms are

ci =
Ne∑
k=1

wk ψi(xk) φ(xk) (5)

Finally the coefficients of the linear function can be computed by inverting the matrix

Aij and the flow state at the l-th forcing point is approximated as

QF l

=
Ne∑
k=1

φl
kQ

k (6)

where φl
k are the shape functions at the forcing point xF l

conjugated with the wall

Lagrangian marker xl. By construction, the support domain guarantees 8 and 26

Eulerian markers in two- and three-dimensions respectively. Once known QF l

, the flow

state Ql at wall xl is computed so as to satisfy the prescribed BCs

Ql = Q(xF l

,xl
w) (7)
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Besides, for a moving body its velocity Ul
body must be considered

Ul = Ul
w −Ul

body (8)

In particular, the no-slip velocity BC becomes the velocity of the wall

Ul = 0 ⇒ Ul
w = Ul

body

In case of slip velocity, the non-penetration condition prescribes that the normal

component of the wall velocity matches the surface one

Ul · n = 0 ⇒ U l
n =

(
U l
n

)
body

Finally, the same shape functions used for the WLSQ at forcing points are applied

to transfer back the flow states from the Nl Lagrangian markers (two markers in the

example of figure 2) to the center of the target ’fresh’ cell

Qe
k =

Nl∑
l=1

φl
kQ

l (9)

The described MLSQ procedure falls into the family of dynamic ’reconstruction’

methods and is very similar to one discussed in Refs.[11, 13]. Note that, the AMR

technique is applied at each time-step thus allowing a transient mesh adaptation.

4. FSI coupling strategies

This section describes the procedure for coupling the dynamic IB method with the

Nastran structural solver following the partitioned approach shown in figure 3. Consider

the motion of an object moving into an unsteady flow field. At each time step t+∆t the

pre-processor tags the mutual position of moving surfaces with respect to the fixed cells.

After the loads’ transfer, the structural solver computes the new shapes and the cycle

restarts. The surface deformations can be computed at each or every ‘N’ time-steps

depending on the coupling approach.

A key aspect is the design of a proper interface to allow the loads’ mapping and the

communications between solvers. Usually the aerodynamic mesh is more refined than

the structural one. The use of non-conservative interpolators introduces errors that

could potentially impair the entire transient process. Here, the loads’ transfer is based

on a robust and consistent Radial-Basis-Function (RBF) which allows minimizing the

errors due to countless data exchange[35].

An implicit loop is fundamental to drive both codes towards converging solutions

at each time-step. The process uses convergence criteria based on both loads’ and

displacements’ errors. Usually, three to five implicit iterations suffice even if a limiting

number of iterations is recommended. Indeed, though mesh interpolators are designed
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Figure 3. Partitioned coupling strategies.

to be energy conserving, errors due to the partitioned and/or the staggered nature of

the coupling can drive the entire process to diverge.

In general, loose and tight ‘two-way’ couplings are possible. Here, we consider loops

based on time-accurate aerodynamics and steady-linear or dynamic non-linear structural

analyses.

A ‘static two-way FSI-coupling’ provides a loose interaction between computational

fluid dynamics (CFD) and computational structural mechanics (CSM). Here we apply

the staggered scheme shown in figure 4 with data-exchange every ∆tFSI . In particular,

CFD starts its computation at tiCFD and delivers the surface loads fi to CSM. The

interface makes data interpolation, mapping and loads transfer. The structural solver

applies linear and static assumption with stiffness Si and delivers the modified surfaces

to CFD. The displacements di are transferred back to CFD for the next time-step. The

deformation velocities are not considered. An implicit loop drives the codes to loads’

convergence. Due to the use of steady CSM modelling, the FSI loop is driven by the

unsteady CFD process that runs a number of physical ∆tCFD = ∆tFSI time-steps. In

particular, the loose coupling is applied to compute the aeroelastic loads due to the

slat-main-flap airfoil deployment as described in the results’ section.

The FSI interface is further updating to allow a ‘dynamic two-way coupling’. The

latter consists of a staggered scheme with data-exchange every ∆tFSI as shown in

figure 5. In particular, CFD starts its unsteady computation at tjCFD = tiFSI . The

interface makes data interpolation, mapping and delivers the surface loads fi to CSM.

The latter accounts for the dynamic behavior of the structure by means of a transient
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Figure 4. FSI simulation strategy: static two-way coupling.

Figure 5. FSI simulation strategy: dynamic two-way coupling

solver. However, the deformations are kept small so that the linearity of the structure

plays. The Nastran tool computes the structural model with stiffness Sk by explicitly

computing M sub-steps ∆tkCSM covering the entire ∆tFSI . Surface deformations di

and deformation velocities ḋi are transferred back to CFD. An implicit loop guarantees

loads’ convergence.

This strategy pre-requisites small ∆tFSI to keep the structure linearity. Besides, a

small time-step justifies time-back from CSM to CFD. In general, the choice of the ∆tFSI

is an issue for partitioned approaches as it represents a compromise between stability,

robustness and computational resources. For example, choosing ∆tFSI = ∆tCSM could

catastrophically increase the computational time. Alternatively, the CSM could be

applied every N ·∆tCFD time-steps and in this case ∆tFSI = N ·∆tCFD.

Note that, the dynamic coupling is still under development. If successful, it will be
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applied to study the aeroelastic loads during a Krueger-flap deployment.

5. Results

The following sections discusses the numerical results obtained by using the

dynamic IB-method described above. Classic far-field boundary conditions, based on

the characteristic’s theory, are used. For turbulent cases, the k−ω closure is applied to

the RANS equations. The wall-model is activated at solid boundaries.

The results obtained for the pitching airfoil and the Krueger-flap deployment refer to

the sole interaction of the external flow with imposed rigid motions. On the contrary, the

section on the slat-main-flap deployment considers the rigid motions and the aeroelastic

effects as well.

5.1. Pitching airfoil

A widely adopted benchmark for unsteady solvers is the AGARD CT5 transonic and

inviscid flow around an oscillating NACA0012 airfoil. The latter rotates harmonically

about the quarter-chord at M = 0.755, following the pitching law

α(t) = αm + α0sin(2πf+t+) (10)

where f+ = f c/U∞ is the non-dimensional frequency based on the free-stream velocity

and the airfoil chord length c. The reduced frequency is k = π f+ = 0.0814 and the

angle of incidence varies around αm = 0.016◦ reaching a maximum of α0 = 2.51◦. The

computational domain spans 30c × 30c away from the surface and consists of 48, 760

Cartesian cells with a minimum dimensionless size of ∆x+ = 9.7656 ·10−4. The periodic

rotation causes the shock-buffeting on both the upper and the lower sides making the

test challenging for any numerical scheme. In this case, we exploited the AMR strategy

to follow pressure gradients accurately. Indeed, the resolution of these zones is crucial

for computing accurate transient loads.

Time-accurate computations are carried out for 154.48 convective time-units

(CTUs) by using two different time steps T/360 and T/720. The latter guarantee

the CFL constraint CFLbody < 1 at trailing-edge and low levels of SFOs as shown in

figure 6-a. The results are compared with body-conforming data[36] and experimental

measurements[37] from literature. In particular, the figure 6-b shows an overall

agreement between the numerical data. Anyway, both of them slightly underestimates

the experiments. Regarding the accuracy, no significant differences are observed in the

solution when using 360 or 720 steps per period.

Comparisons in terms of instantaneous Cp distributions are shown in figure 8. The

plots contain the present results, the numerical data from Kirshman et al[38] and the

experimental measurements at two different phases. In the first case φ = 67.8◦, the airfoil

is near the maximum incidence α(t) = 2.34◦ and a shock acts on the upper surface. The

present results agree with the solution of Kirshman et al. obtained by using a Cartesian



Studying the deployment of high-lift devices by using dynamic Immersed Boundaries 12

(a) Transient quantities. (b) Lift coeff.

Figure 6. AGARD−TC5 pitching airfoil: transient lift coeff. Present method (solid),

body-conforming method[36] (�) and experiments[37] (•).

(a) α(t) = 2.34◦. (b) α(t) = −0.54◦.

Figure 7. AGARD − TC5 pitching airfoil: contour map of instantaneous pressure

coeff.

method. Nevertheless, both numerical solutions locate the shock slightly upstream than

the experimental measurements.

The second phase φ = 347.2◦ corresponds to α(t) = −0.54◦ when a stronger shock

plays on the upper-side. Again, both numerical methods match the measured pressure

levels on airfoil but they fail to capture the shock-wave position.

On the whole, these comparisons as well as the low levels of transient SFOs

demonstrate the accuracy and robustness of the dynamic IB-method.
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(a) α(t) = 2.34◦. (b) α(t) = −0.54◦.

Figure 8. AGARD − TC5 pitching airfoil: instantaneous pressure coeff. Present

method (solid), Cartesian method[38] (�) and experiments[37] (•).

5.2. Krueger-flap deployment

The geometry is based on the DLR-F15 multi-element high-lift airfoil[39]. The

geometry was modified by Dassault Aviation in the scope of JTI CleanSky-SFWA

to reproduce the leading-edge shape of a natural laminar airfoil (NLF). First results

using this geometry have been published in [40], which is the only publication that

is mentioning this modification up to now. The airfoil consists of a main element

incorporating the NLF leading edge and a flap, positioned at a rather swallow angle

to avoid any risk of flap separation. The flap is fixed in its take-off position of θ = 13◦

and does not move during the Krueger deployment (see figure 9).

The Krueger device is composed of a Krueger-plate rotating around its hinge point

and the bull-nose having its own motion. Note that, the two elements join only in the

final phase and a small gap is present for large part of the deployment. That is, the air

is obliged to flow through a narrow area during large part of the simulation. Numerical

issues could potentially arise in this area. Instead of lowering the code performance

(e.g. by limiting the time-step), the Krueger-plate and the bullet-nose are joined and

the simulation is started from a partially rotated position of θ = 22.915◦ as shown in

figure 10.

The design flow conditions are Mach = 0.15 and Re∞ = 2 · 106 based on the main

element chord length of c = 0.6m. The multi-component airfoil is the section of a full-

span model (zero swept angle) that will be object of wind-tunnel measurements in the

short term. The suggested angle of incidence is α = 10◦.

The two-dimensional Cartesian mesh spans 30c × 30c away from the surface and

counts a variable number of O(105) cells with a minimum cell-size of ∆xmin/c =

4.4414 · 10−4. Again, both geometry- and flow-based adaptive refinements (AMR) are
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(a) Krueger deployment. (b) Full extended position.

Figure 9. Krueger-flap configuration.

Figure 10. Krueger-flap deployment: geometry simplifications.

applied.

The following numerical simulation deals with the simple rigid body motion (RBM)

due to the Krueger-flap deployment. It consists of a clockwise 2D rotation around the

hinge point shown in figure 10 at a constant rotation speed of θ̇ = 142.915 deg/sec. The

full extension occurs in 1 sec.

Due to the highly separated flow, the time-accurate simulation starts from an

unsteady solution (rather than a steady one) obtained by fixing the Krueger rotation

at θ = 22.915◦ and running 802 time-steps with ∆t+ = 1.7 · 10−2 (∆t = 2 · 10−4 sec) till

reaching t+ = 13.634CTUs (t = 0.1604 sec). After that, the Krueger begins to rotate

till reaching the full extended position of θ = 142.915◦ at t+ = 85 (1 sec). Note that,

the adopted time-step guarantees CFLmax
body < 1.
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(a) t+ = 13.634, θ = 22.915◦. (b) t+ = 44.23, θ = 74.36◦.

(c) t+ = 54.43, θ = 91.52◦. (d) t+ = 85, θ = 142.915◦.

Figure 11. Krueger-flap deployment. Mach = 0.15, Re∞ = 2 · 106. Dynamic AMR

mesh colored by the dimensionless turb. kinetic energy.

The figure 11 shows local views of the AMR mesh colored by the dimensionless

turbulent kinetic energy and for different rotation angles. As expected, a flow separation

occurs downstream the Krueger and extends along the main lower-side. It involves the

bay with a complex mixing that influences the belly flow as well as the flap zone.

As the Krueger rotates, the flow-mixing enlarges till reaching the typical bluff-body

wake whose extension is maximum when the wall is nearly perpendicular to the flow

θ = 75.8◦ at t+ = 45 (t=0.53 sec). After that, the wake-region reduces and the vorticity

content of the belly flow appears less significant. As desired, the fully deployed position

energizes the air on the main upper-surface.

At each times-step, the pre-processor tags the solid walls and refines the mesh

where needed. The dynamic IB-modelling assures the consistent energy transfer between

Lagrangian and Eulerian markers and the respect of wall BCs.

The plots shown in figure 12 compares the transient loads obtained by using two

different time-steps of ∆t = 2 · 10−4 sec and ∆t = 2 · 10−5 sec.

As expected, the lift time-histories exhibit the drop due to the large wake behind
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(a) Lift coeff. (b) Drag coeff.

Figure 12. Krueger-flap deployment. Mach = 0.15, Re∞ = 2 · 106. Loads’ time-

histories: ∆t = 2 · 10−4 sec red-colored solid-line, ∆t = 2 · 10−5 sec blue-colored solid-

line.

the Krueger and the progressive recovery towards the extra lift at the full extended

position. The two curves are very similar and almost overlapped. However, the lift drop

is more pronounced and the curve appears noisier as time-step decreases.

Analogously, the transient drag is not influenced by the time-step refinement whose

major effect is an increase in spurious oscillations. The latter does not surprise as the

time-step is decreased by keeping the cell-size constant.

5.3. Slat-main-flap deployment

The geometry is the DLR − F15 multi-element high-lift airfoil[39]. It is a cut profile

through a 3D wing belonging to a transonic large single aisle transport aircraft.

The airfoil consists of a slat, a main element and a flap, which is leading-edge

normalized with the sweep angle of the reference wing.

The design flow conditions are Mach = 0.15 and Re∞ = 7 · 106 referred to the

airfoil reference length of c = 1.0m. The suggested angle of incidence is α = 10◦.

The two-dimensional computational domain spans 30c× 30c away from the surface

and the Cartesian mesh counts a variable number of O(105) cells with a minimum

cell-size of ∆xmin/c = 4.8828 · 10−4. Both geometry- and flow-based refinements are

applied. The deployment deals with a simple 2D counterclockwise rotation of the slat at

a constant rotation speed of θ̇ = −1.8667 deg/sec. At the same time, the flap translates

and rotates following a prescribed deployment-law. The complete motion occurs in a

time-range of 15 sec. Local views of the AMR mesh at different instants of time are

shown in figure 13 along with the instantaneous contour map of dimensionless turbulent

kinetic energy.
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(a) t+ = 100. (b) t+ = 400. (c) t+ = 750.

Figure 13. Flap-slat deployment. Mach = 0.15, Re∞ = 7 · 106. Dynamic AMR

mesh colored by the dimensionless turb. kinetic energy at fully deployment position

t+ = 750.

Figure 14. Local view of the quasi-2D FEM model.

At fully retracted position, the flow field is initialized by using a converged

steady RANS solution. The complete geometry deployment is obtained after running

750CTUs. A non-dimensional time-step of ∆t+ = 2.5·10−2 (∆t = 5·10−4 sec) is used. It

guarantees that the CFL based on the maximum wall velocity is less than one. The first

deployment phase is characterized by an almost steady flow. After 100CTUs (2 sec),

two recirculating zones appear in the slat and main coves due to geometric concavities.

As the slat and flap open, the two steady bubbles enlarge. The latter, however, do not

cause large separations on the main and flap surfaces. In particular, the URANS model

estimates an almost continue loads’ increase throughout the deployment phase as it will

be shown afterwards.

The first 2D simulation considers only the rigid body motion (RBM) due to the

roto-translations of slat and flap without considering aeroelastic effects. At each time-

step the mesher tags the new surface position and splits the IB cells marking them

as solid or fluid by considering their mutual position w.r.t. the moving object. The

MLSQ procedure reconstructs, in space and time, the flow-state vector at ‘fresh’ cells

that emerge towards the fluid region.

The transient load coefs. (referred to Aref = 1m2) are shown in figure 15 and
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(a) Lift coeff. (b) Drag coeff.

Figure 15. Flap-slat deployment. Mach = 0.15, Re∞ = 7 ·106. Loads’ time-histories.

blue-colored. As anticipated above, the two recirculating zones are confined to the slat

and main coves and have little influence on the regular flow patterns around the main

and flap surfaces. This explains why, at α = 10◦, the high-lift device is able of doubling

the 2D lift coefficient.

The second computation considers the elastic behavior of the geometry and applies

a loose coupling between fluid- and structural-dynamics during the whole deployment

phase. The FEM model is a 2.5D structure with only one-element width along the span

as shown in figure 14. It represents a rod from steel with cross section radius of 0.05m.

The body structures (slat, main and flap) are modelled with solid hexa- and penta-

elements. The connection slat-to-main and flap-to-main are made from simple beam

elements with 50mm radius. To simplify, the beam length is self-adjustable and follow

the motion of its end-nodes. In addition, auxiliary beams are introduced to stabilize the

model. The latter is arbitrarily fixed at the 25% of the chord. The material is assumed

to be steel for both solid and beam elements. A simplified model is considered having

one cell width of 1m in the span. The connections as well as model constraints are

placed at the span-ends of the model.

The loose FSI coupling is obtained by applying a linear and static structural

modelling at each time-step following the staggered scheme shown in figure 4. In

particular, CFD starts its computation at tjCFD and delivers the surface loads fi to CSM.

The interface makes data interpolation, mapping and loads transfer for CSM. Since the

CFD simulations are two-dimensional, the pressure load is propagated uniformly in the

span. Then, the Nastran static solver computes the structural model with stiffness Si

at time tiCSM = tjCFD. The middle section is used as a two-dimensional representation

of the structural deformation. The displacements x̂i are transferred back to CFD that

continues its computation.

The current FSI process is driven by the unsteady flow solver and it has been
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(a) Global view. (b) Local view.

Figure 16. Flap-slat deployment. Mach = 0.15, Re∞ = 7 · 106. Pressure coeff. and

modified shapes due to aeroelastic loads at t+ = 750 (15 sec).

running for 30, 000 time-steps with ∆t+FSI = ∆t+CFD. An implicit loop verifies the loads’

convergence by checking that |∆Cl|∞ < 5 · 10−3 so as to guarantee a maximum number

of 2÷ 5 sub-iterations.

The aeroelastic loads are shown in figure 15 and red-colored. In particular, the

lift coefficient slightly decreases around t+ = 100 (t = 2 sec) mainly due to a flap

deformation in the positive z-direction. Later, it increases but its growth rate is less

than the rigid case. When the device is fully deployed, the lift coefficient is decreased by

nearly 13% w.r.t. the rigid case. Due to aeroelastic effects, the transient drag increases

but slower than the RBM case and results in a drag drop of nearly 30% in the fully

open position.

The high-lift loads cause visible changes to the trailing-edge of the main component.

Partial rotation, translation and deformation occur for the flap itself as shown in

figure 16-a. The comparison of pressure distributions clarifies the reasons behind the

lift drop at the fully deployed position. As expected, the changes occurring in the flap

area (figure 16-b) cause local pressure variations de-facto modifying the global loads.

On the whole, the loose FSI coupling estimates that the device deployment causes

a lift drop while the efficiency slightly increases.

The advantage in terms of simulation turn-around time is clear. For example, the

time required to generate automatically O(105) flow-adapted Cartesian cells around the

three-element airfoil is about 10 seconds. Besides, this occurs only at the first meshing-

step. The CPU-time decreases to roughly 4 sec if a ‘local’ mesh update is required due

to body motions/deformations at each time-step.

The above numbers would say nothing if not put in a three-dimensional context. In

general, the man-power required to build-up a multi-block structured or unstructured

mesh of 20M cells around a three-dimensional configuration (of medium complexity)
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takes 15 to 30 days. Besides, the meshing process is carried out almost entirely by

hand and requires expert technicians. On the contrary, the same number of Cartesian

cells are generated automatically in about 20 minutes. Assuming that the CPU-time

per iteration per cell is more or less the same among flow solvers, it turns out that the

present method speeds up the simulation process of one order of magnitude, at least for

fixed geometries.

One of the main issues encountered during the simulation process is a local violation

of the CFLbody < 1 condition somewhere in the emerging cells. The above constrain

obliges to pay attention to an a priori estimate of the maximum allowed time-step.

About the current three-element deployment, it is sufficient a slight decrease of the

time-step to obtain a stable FSI process (once fixed the desired cell-size). However,

this is not possible in case of flows driven by large deformations. In those cases, the

time-step has to be tuned dynamically.

6. Conclusions

An immersed boundary method is developed to allow the simulation of

compressible, inviscid or viscous flows around moving/deforming objects. A hybrid

Lagrangian-Eulerian approach considers the motion of bodies through a fixed Cartesian

mesh.

The data management is modified to account for ‘fresh’ and ‘dead’ cells during

the dynamic meshing and the tagging phases. A MLSQ procedure allows accurate and

consistent space and time reconstructions in those cells that do not have a time-history.

A dynamic IB-model considers the body motions by means of proper Lagrangian markers

and satisfies local BCs there. The model uses the surface velocities to account for rigid

roto-translations and/or local wall deformations.

The results obtained for the oscillating airfoil are in line with other numerical data

from literature and demonstrate the applicability of the method in case of objects moving

with prescribed rigid laws.

The method is applied to the rigid deployment of a Krueger-flap device and the

results are discussed in terms of aerodynamic performance by monitoring the transient

loads during the Krueger rotation.

An FSI interface is developed to drive the solution sequence between the IB-method

and a CSM-solver in a fully automatic mode. A loose coupling, based on a staggered

sequence, is applied to the deployment of a three-element airfoil and a 2.5D transient

solution is computed in a short turnaround time.

Of course, the final aim is to simplify and automate the numerical analysis of the

Krueger-flap deployment. Nevertheless, this technology has the potential to be exploited

for studying different aeroelastic problems, such as the wing-buffeting, the opening of

landing-gears and doors, just to cite few.
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7. Future work

The loose FSI coupling is object of continuous upgrading for allowing fully three-

dimensional aeroelastic analyses. In particular, the dynamic Cartesian method is being

modified to speed-up the tagging as well as the meshing algorithms.

A tight non-linear FSI coupling is under development. Once available, it will

be used for computing a full-span Krueger-flap deployment for which the wind-tunnel

measurements will be available soon.
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